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The formation of a toroidal bubble towards the end of the bubble collapse stage in the
neighbourhood of a solid boundary has been successfully studied using the boundary
integral method. The further evolution (rebound) of the toroidal bubble is considered
with the loss of system energy taken into account. The energy loss is incorporated into
a mathematical model by a discontinuous jump in the potential energy at the minimum
volume during the short collapse–rebound period accompanying wave emission. This
implementation is first tested with the spherically oscillating bubble system using the
theoretical Rayleigh–Plesset equation. Excellent agreement with experimental data
for the bubble radius evolution up to three oscillation periods is obtained. Secondly,
the incorporation of energy loss is tested with the motion of an oscillating bubble
system in the neighbourhood of a rigid boundary, in an axisymmetric geometry, using
a boundary integral method. Example calculations are presented to demonstrate the
possibility of capturing the peculiar entity of a counterjet, which has been reported
only in recent experimental studies.

1. Introduction
The dynamics of a non-equilibrium violently oscillating gas bubble have been

studied extensively for many decades. The early works on bubble dynamics focused
on underwater explosions (Taylor 1942; Cole 1948). Laser-generated cavitation
was developed in the early 1970s for experiments with a single transient bubble
(Lauterborn 1972). Some studies have also been undertaken in new areas such as
medical ultrasonics and sonochemistry (Leighton 1994).

The motion of a spherically oscillating bubble system is described briefly below.
Because of the initial high pressure in a small volume, the bubble starts to expand
against the surrounding medium almost immediately. The expansion continues for a
relatively long time, and the internal gas pressure decreases gradually. However, inertia
causes the bubble to over expand and the pressure inside the bubble becomes lower
than the surrounding reference pressure; it then stops expanding. The hydrostatic
pressure is now considerably larger than the pressure inside the bubble (∼0.1 bar)
and then a collapse phase ensues. This contraction phase continues until the gas
pressure becomes much larger than the surrounding fluid pressure and then a second
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expansion follows. Finally, the bubble becomes an oscillating system owing to the
inertia of the water together with the pressure of the gas. The bubble undergoes
several cycles of expansion and contraction, each time with reduced amplitude owing
to the loss of system energy. Experiments reveal that the total energy of the bubble at
the second cycle is only around 30 % of that at the first cycle (Cole 1948; Buogo &
Cannelli 2002).

The dynamics of transient bubbles adjacent to a rigid boundary are of great
interest to engineers because of the potential destructive action of bubbles on solid
surfaces. One of the distinguished phenomena is the evolution of a toroidal bubble.
The asymmetry is introduced into the flow field because of the presence of the rigid
boundary, so that the bubble evolves into a toroidal form during collapse (Benjamin &
Ellis 1966). This was demonstrated well both numerically and experimentally by
Tomita & Shima (1986).

The boundary integral method is well developed for use in calculating the evolution
of bubbles with the assumption of an ideal fluid flow that is inviscid and irrotational
(Blake, Taib & Doherty 1986; Chahine & Perdue 1988; Boulton-Stone 1993; Pearson,
Blake & Otto 2004). This method was extended to the analysis of a toroidal bubble
(doubly connected geometry) by introducing a dynamic cut in the flow domain, which
allows the bubble to be considered as singly connected (Best & Kucera 1992). Since the
potential function in a doubly connected flow field is non-unique, another approach
using a vortex ring inside the bubble was introduced by Lundgren & Mansour (1991)
and also adopted in Wang et al. (1996) for simulating the transition of the original
singly connected bubble into the toroidal bubble.

However, most of the previous computations using the boundary integral method
have been applied only up to about the first collapse (one cycle), since the analyses did
not take into account the system energy loss (Brujan et al. 2002). In fact, during the
bubble’s life, undergoing several oscillations, a series of energy deposition mechanisms
would be involved with significant loss mechanisms; there are kinetic and potential
energies of the bubble and the liquid, potential energy due to buoyancy, and potential
energy due to surface tension. Some of the loss mechanisms are due to pressure pulse
radiation into the liquid, chemical reactions, molecular relaxation in the gas, heat
and mass transfer at the bubble surface. Some of these could be primary, some are
secondary, and some are negligible (Geers & Hunter 2002). The emission of bubble
pulses that could be the main loss mechanism is significant only in a small interval
about the time of minimum volume. The bubble pulse builds up to a maximum value
at minimum volume and falls off again as the bubble expands. The phenomena of
collapse and rebound accompanying shock-wave emission of a single laser-generated
cavitation bubble were investigated experimentally by means of high-speed cinemato-
graphy by Lindau & Lauterborn (2003). They observed two compression shock waves
( jet torus shock wave and tip bubble shock wave) emitted in rapid succession when the
bubble reaches minimum size and maximum compression.

An early calculation for the rebound of a non-spherical bubble and possibly the
rejoining into a singly connected bubble, which is the next stage of the toroidal
bubble development, was demonstrated numerically with no consideration of energy
loss (Best 1994). In the current work, we aim to produce a more realistic result for the
oscillating bubble system undergoing more than one cycle. The loss of system energy
is employed with a discontinuous jump condition (as a fraction of total system energy)
in the potential energy (via bubble pressure) at the minimum volume during the short
collapse–rebound period. The energy loss mechanisms due to compressibility, viscosity
and radiation involve further complex physics (Putterman & Weninger 2000), and
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the magnitude of their contributions is expected to vary in different physical regimes.
This is beyond the scope of the present work.

To demonstrate this implementation, we first examine a spherically oscillating
bubble system up to two or three cycles in terms of the maximum bubble radii,
bubble periods and fractions of energy lost in each cycle. The theoretical Rayleigh–
Plesset equation with the loss of system energy taken into account is found to match
well with available experimental data. With the promising result for the spherical
bubble system, the analysis of axisymmetric flow configurations using the boundary
integral method has been conducted with the same implementation of the energy loss
model. One of the challenges for the computation of a bubble near a wall is the
counterjet that has only been reported in experiments (Tomita & Shima 1986; Vogel,
Lauterborn & Timm 1989; Ward & Emmony 1991; Philipp & Lauterborn 1998;
Kodama & Tomita 2000; Lindau & Lauterborn 2003). Since the counterjet develops
during the rebound (beginning of second cycle), the boundary integral formulation
must take into account the loss of system energy.

2. Theory
We describe the fluid as inviscid and incompressible and the flow induced by the

bubble’s motion as irrotational. Hence, the velocity field u can also be described using
potential theory, and the velocity potential satisfies the Laplace equation

u = ∇φ where ∇2φ =0. (2.1)

At the bubble surface, if no surface-tension effects are taken into account, the pressure
in the fluid must be continuous and equal to the pressure inside the bubble Pb. This
pressure is assumed to be uniform inside the bubble and consists of two parts: one
part resulting from the gas content of the bubble and one part vapour. It is assumed
that the gas inside the bubble behaves as an ideal gas and there is negligible heat
exchange with the surrounding fluid, so that the expansion and compression of the
gas content of the bubble are adiabatic. The vapour pressure Pv is a function of the
temperature of the bubble wall only and is assumed to be small for most cases under
investigation (Pv ∼ 2 kPa at 20 ◦C) and is often neglected (Klaseboer et al. 2005) since
it is usually much smaller than the atmospheric or reference pressure of the system.
However, it might become important under certain circumstances such as in spark-
generated bubbles of maximum radius 35 mm as used by Buogo & Cannelli (2002),
where the vapour pressure was about Pv = 0.3 bar for the first oscillation cycle of
the bubble and 0.06 bar for the second cycle, indicating the heating up of the bubble
wall and its subsequent cooling down for the second cycle (the values 0.3 bar and
0.06 bar correspond to wall bubble wall temperatures of 69 and 36 ◦C, respectively).
Similar results were found by Lew, Klaseboer & Khoo (2006) where an even larger
value of Pv =0.4 bar was measured for the first cycle for spark-generated bubbles
with maximum radii of 3 to 5 mm. Dalton’s law for mixtures of ideal gases states that
the pressures of the vapour and the gas can be added. Hence, the bubble pressure as
a function of the volume, V , is described as (Best & Kucera 1992; Brennen 1995)

Pb =Pv + Pg,0

(
V0

V

)λ

, (2.2)

where the subscript 0 denotes initial quantities, λ is the ratio of the specific heats for
the gas and empirically determined. The term Pg,0 is the pressure at the initial state
and is usually of the order of magnitude of 100 to 500 bar. The equation for the
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vapour pressure inside implicitly assumes that the vapour evaporates when the bubble
expands and condensation occurs at the bubble surface when the bubble shrinks. This
will keep the vapour pressure at a constant value. This is only valid when the speed
of the bubble wall is small compared to the speed of sound (or the Mach number
� 1). In most practical cases, the speed of the bubble wall will not exceed 100 m s−1

and thus this condition is satisfied. The mass of the gas inside the bubble is assumed
to be constant, since diffusion into the liquid is minimal during the time scales we are
looking at. Also, it is implicitly assumed that the vapour and gas are diluted enough
so they do not influence each other (Dalton’s law). We will focus on an oscillating
system undergoing more than one cycle, in which some of the energy in the bubble
system is lost at each cycle, so we expect progressively decreasing maximum bubble
radii and periods.

2.1. Energies in the oscillating bubble system

We shall describe the total energy E in the oscillating system. Note that the total
mechanical energy is conserved only within one cycle. It consists of the work done
by the bubble (potential energy, Ep) and the kinetic energy Ek (Cole 1948; Pearson
et al. 2004)

E = −
∫ V

V0

Pg,0(V0/V )λ dV +

∫ V

V0

�P dV + 1
2
ρ

∫
Ω

u2 dΩ = constant for each cycle,

(2.3)

with �P = P∞ − Pv and P∞ =PATM + ρgh the reference pressure at the hydrostatic
depth h far away from the bubble, where PATM is the atmospheric pressure (1 bar),
g the acceleration due to gravity and ρ is the fluid density. The potential energy Ep

consists of two terms (the first two integrals in (2.3)); the first integral results from
the energy added to the system due to the bubble pressure and the second integral
originates from the fact that some work is done at infinity due to the conservation of
volume in the fluid corrected by a term due to the vapour pressure (Cole 1948). The
total kinetic energy Ek of the system is obtained by taking the square of the absolute
velocity u, multiplying it by the fluid density (i.e. the kinetic energy per unit mass)
and integrating it over the whole fluid domain Ω (third integral in (2.3)). The bubble
will reach each maximum bubble radius, Rm,n for the nth oscillation with oscillation
period Tn.

Non-dimensionalization of the equations is now employed with scaling parameter
for all lengths the first maximum bubble radius Rm,1, for volumes with R3

m,1, for all

pressures with �P , for velocities with
√

�P/ρ, for potentials with Rm,1

√
�P/ρ and

finally for time with Rm,1

√
ρ/�P . From now onwards, all variables with an overbar

are considered as dimensionless. With the help of the Gauss theorem, equation (2.3)
can be rewritten as an integral over the surface of the bubble only. The final non-
dimensional equation is simply given by (Wang & Khoo 2004)[

εn

λ − 1

(
V̄0

V̄

)λ

+ 1

]
V̄ + 1

2

∫
S

φ̄
∂φ̄

∂n
dS̄ =

εn

λ − 1
V̄0 + V̄0. (2.4)

Here, the subscript ‘0’ corresponds to the time when the new cycle starts. Buoyancy
effects are neglected, but could easily be included by adding a term δ2z̄cV̄ to the
left-hand side of (2.4), where zc is the depth of the bubble centre and δ =

√
ρgRm/�P

is the so-called buoyancy parameter (Best 1993). This is justified when the maximum
bubble radius is small (several mm) or the reference pressure is relatively large. For
underwater explosions, where the bubble radius can reach up to many metres, the
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gravity term must be included. In (2.4), a term with the normal velocity on the bubble
surface appears which is defined as ∂φ/∂n= n · ∇φ. For any fixed solid structure (if
present), this normal velocity is zero (no penetration of the fluid into the solid) and
will thus give a zero contribution to the kinetic energy. The strength parameter for
the nth oscillation is defined as εn = Pg,0/�P , which provides some measure of the
magnitude of the initial pressure exerted by the bubble contents.

In reality, the second period of the bubble becomes less violent. It is therefore
necessary to incorporate the loss of energy into the system. The violent bubble
behaviour associates the emission of energy in the form of pressure pulses propagating
radially outward from the bubble. Other possible mechanisms for energy dissipations
during bubble collapse are thought of as turbulent flow dissipating energy in the
form of eddies owing to mean convective velocity of the bubble, thermal conduction
through the bubble, energy loss due to jet impacts and liquid compressibility. A
detailed examination of each of these mechanisms is beyond the scope of this work.

The loss of energy is most likely to occur in the vicinity of each minimum volume.
We can neglect the short period of emission of energy compared to the length of
the total bubble period owing to the very rapid event of the emission process (see
also Buogo & Cannelli 2002; Delale & Tunç 2004). Consequently, the loss of energy
is assumed to take place instantaneously at the bubble minimum volume with a
discontinuity in the potential energy from the available energy to a lower energy state
corresponding to the fraction of available energy remaining; this is to be provided
from experimental data. That is, at each minimum volume, the strength parameter is
discontinuously replaced by a new value εn, to drop the potential energy into a next
energy level discontinuously such that (using (2.4))

En+1

En

≈ εn+1

εn

< 1. (2.5)

Here, En is the fraction of energy which remains for the nth oscillation of period Tn.
As a relatively simple approach, the bubble energy in each cycle can be estimated

experimentally by measuring the bubble potential energy from its maximum size
(Buogo & Cannelli 2002)

En+1

En

=

(
Rm,n+1

Rm,n

)3(
P∞ − Pv,n+1

P∞ − Pv,n

)
. (2.6)

There is also a useful correlation for the bubble period which varies as the cube root
of the total energy and the negative 5/6 power of the hydrostatic pressure (Cole 1948)

En+1

En

=

(
Tn+1

Tn

)3(
P∞ − Pv,n+1

P∞ − Pv,n

)5/2

. (2.7)

This correlation permits an estimate of energy loss in successive contractions from
the easily obtained ratio of periods.

Another often used correlation is Rayleigh’s (1917) formula which relates Rm to
the collapse time tc (or half-time between the two minimum volumes; tc = Tn/2) for
each cycle via

Rm

tc
= 1.09

√
P∞ − Pv

ρ
. (2.8)

Finally it is emphasized that the above three correlations should be consistent, and
can be further employed for the evaluation of the results.
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2.2. Bubble pulse

The assumption of incompressible fluid leads to a fairly accurate description of the
main features of gas bubble dynamics, particularly of the maximum radius and the
period of pulsation. One of the important phenomena associated with an oscillating
bubble system is the emission of bubble pulses, which is the main mechanism of energy
loss from the system. The pressure pulse is analogous to the spherical/cylindrical
implosion problem where as the contact discontinuity (interface) is undergoing
contraction symmetrically, a shock is generated and propagated radially inwards
towards the centre to be reflected and subsequently radiated outwards. All the above
happens in a very short time where the interface hardly moves while a significant
portion of the overall energy of the system associated with the outward radiating
shock is convected away.

Lindau & Lauterborn (2003) observed, in a laser-induced cavitation bubble in
liquid, the presence of shock wave(s) at about the bubble minimum volume although
no quantitative measurement is made of the shock energy convected away. Cole (1948)
has suggested, ‘. . . the mechanism by which energy can be dissipated: the compressi-
bility of the water, by which energy is radiated as a wave and ultimately dissipated in
heat as the wave passes to infinite distance, and turbulent flow around . . . ’. The
first mechanism due to compressibility of the fluid is similar if not related to
the implosion problem discussed above. On the second mechanism, Cole argued
that ‘ . . . a turbulent wake is formed as a result of water breaking away from
the bubble surfaces, . . . forming eddies in which energy is dissipated by work done
against viscosity . . . ’. The rate of energy dissipation through viscous action taken
to be proportional to the cube of mean bubble convective velocity (also shown
experimentally by Taylor & Davies (1944) for air bubbles with deliberate convective
rise velocity as released in various liquids) can therefore be deemed to be negligible,
especially for the present stand-alone oscillating bubble with minimal mean motion.
The largest movement of maximum convective velocity usually occurs at the bubble
minimum volume. Lastly, Cole remarked that the other possible ‘energy loss by direct
thermal conduction for the short times and small temperature gradients is readily
shown to be negligible, even in the gas sphere, if there is no turbulence.’

Most of the theory for the calculation of the bubble pulses in water is also based
on the incompressible fluid flow descriptions. The pressure at any point in an incom-
pressible liquid can be calculated from Bernoulli’s equation in dimensionless
form as

P̄ = 1 − ∂φ̄

∂t̄
− 1

2
ū2. (2.9)

From the mass conservation of the bubble at two different radii, ū= ˙̄R R̄2/r̄2 with the
overdot denoting differentiation with respect to time. Here, R is the radius. With the

potential, φ̄ = − ˙̄RR̄2/r̄ , (2.9) can be rewritten as

P̄ = 1 + 2
R̄

r̄

(
dR̄

dt̄

)2

+
R̄2

r̄

d2R̄

dt̄2
− 1

2

R̄4

r̄4

(
dR̄

dt̄

)2

. (2.10)

In the following section we will apply (2.10) to the one-dimensional (spherical) bubble
system. Once the result (such as bubble radius vs. time) is obtained from the Rayleigh–
Plesset equation with incorporation of the energy loss, (2.10) is used to predict the
evolution of the successive bubble collapse pulses with diminishing magnitude.
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3. Spherically oscillating bubble system
First, we consider a bubble oscillating in an infinite fluid with no gravity. The

problem is spherically symmetric. By applying this boundary condition to the Bernoulli
equation, we obtain the simplest form of the Rayleigh–Plesset equation (Brennen 1995)

Pb − P∞

ρ
= 3

2
(Ṙ)2 + RR̈, (3.1)

The Rayleigh–Plesset equation can be rewritten in dimensionless form (Best & Kucera
1992) as

P̄ g − 1 = εn

(
V̄0

V̄

)λ

− 1 =
3

2

(
dR̄

dt̄

)2

+ R̄
d2R̄

dt̄2
. (3.2)

This can be solved accurately by a standard ODE solver such as the fourth-order
Runge–Kutta method. The bubble is initially supposed to be spherical and of radius
R̄0 (R̄0 relates to the corresponding value V̄0 of (3.2)), and zero bubble wall velocity.
For bubble explosion, λ= 1.25 as in Cole (1948). The three dimensionless parameters
R̄0, λ and ε1 cannot be chosen independently, but are correlated by an equation,
which is deduced from the Rayleigh–Plesset equation (Klaseboer et al. 2005)

ε1

λ − 1

(
R̄3λ

0 − R̄3
0

)
= −1 + R̄3

0. (3.3)

3.1. Explosion bubble

Consider the explosion of a 0.249 kg tetryl charge placed at a depth of h = 91.44 m
below the surface. To compare with experimental data, dimensional parameters must
be used in this case. An equation to calculate the first maximum bubble radius with
charge weight W (in kg, TNT equivalent) and depth h is given in Cole (1948)

Rm,1 = K1

(
W

h + 10

)1/3

. (3.4)

The bubble period–depth relation is found with an empirical constant K2 (Cole 1948)

T1 = K2

W 1/3

(h + 10)5/6
, (3.5)

where T1 is the bubble period. The above equations are converted to SI units.
If the vapour pressures in (2.6) and (2.7) are assumed to be negligible (for most of

the explosion bubble studies), a useful correlation for the bubble period and maximum
radius which varies as the cube root of the total energy is obtained as

En+1

En

=

(
Tn+1

Tn

)3

=

(
Rm,n+1

Rm,n

)3

. (3.6)

Table 1 gives the experimental data for the maximum bubble radii and bubble periods
in terms of the total energy of the system. The data correlate well with (3.6). In general,
the second bubble period and the bubble maximum radius are around 70 % of the
first ones.

The parameters for the calculation of this example are: ε1 = 103.36 and λ=1.25 (R̄0

is calculated with (3.3) and is about 0.1467). Figure 1 shows the normalized energy
variations for up to 3 cycles considered. The total mechanical energy of the system
E = Ek + Ep is assumed to be conserved during each cycle (Wang & Khoo 2004),
since it reckoned that energy loss occurred primarily at the minimum volume (see
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Cycle First period Second period Third period

Fraction of available energy remaining (%) 100 34 54
Fraction of original energy remaining (%) 100 34 18
Rm (cm) 45.2 30.5 23.9
T (ms) 28.6 21.0 N/A

Table 1. Energy losses in contractions of the explosion-generated bubble, maximum bubble
radii, and bubble periods for 0.249 kg TNT equivalent charge at 91.44m depth from Cole
(1948). Rm,2/Rm,1 (= 0.67) ≈ T2/T1 (= 0.73) ≈ (E2/E1)

1/3(= 0.70) using (3.6).

0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4

E

t

E1

E2

Ep

Ek

Figure 1. Energy balance (the kinetic and potential energies) of the spherical explosion
bubble; 0.249 kg tetryl charge at a depth of 91.44m below the free surface. The energy is
normalized with the initial energy E1. Time is also non-dimensionalized. The parameters for
the calculation are ε1 = 103.36, λ= 1.25 and R̄0 = 0.1467.

discussion in § 2.1). The zero kinetic energy at the bubble minimum volume allows for
a simple implementation of a discontinuous jump condition in the strength parameter.
The prediction used the same fraction of total energy, which was estimated from the
experiment (see table 1). The incorporation of energy loss allows us to match well
with the measured bubble radii and bubble periods up to three oscillation cycles
(figure 2). For comparison, the prediction for a perfect oscillating system (no energy
loss at each cycle) is also displayed in figure 2.

Some small-scale experiments at the Centre Technique des Systèmes Navals in
France in a specially designed test pond have been performed. The pond has a
truncated cone shape with a mean radius of 9 m at the top surface, a depth of 7 m and
a useful mean radius of 7.5 m at mid-depth. A high-speed camera (1000 images s−1)
is used to record the bubble explosion phenomena. The first series of experiments
described are the free field explosions. A Hexocire (RDX + wax) charge of 55 g is
placed at a depth of 3.5 m. The charge is detonated using an exploding bridgewire
detonator (without primary explosive) and a high-energy unit. Further details of the
experiments can be found in Klaseboer et al. (2005). In figure 3, the selected frames



Boundary integral method for the rebounding bubble 415

0

5

10

15

20

25

20 40 60 80

R
 (

in
.)

t (ms)

Figure 2. Comparison of experimental (circles) and theoretical (solid line) results for radius
histories of the spherical explosion bubble, for a 0.249 kg tetryl charge at a depth of 91.44m
below the surface. The theoretical result with no energy loss (dashed line) is also displayed.
The experimental data are taken from Cole (1948).

(a) (b) (c) (d)

Figure 3. Selected frames showing bubble growth, collapse and rebound for a 55 g Hexocire
charge at a depth of 3.5 m below the surface. (a) t = 5 ms, (b) t =50 ms (first maximum),
(c) t = 94 ms (first minimum), (d) t = 130 ms (second maximum), Rm,2/Rm,1 ≈ 0.73, for the first
two expansion periods T2/T1 = 0.72.

of bubble shape are shown. The first bubble period is around 94 ms. At roughly
t = 50 ms, the bubble reaches its first maximum size. The ratio of the first two bubble
maximum radii (Rm,2/Rm,1) is estimated to be around 0.73. For the bubble period,
we merely compared the first two expansion periods (36/50 = 0.72). Overall, the two
test cases considered here for the explosion-generated bubbles show similar results in
terms of the system energy remaining in the second cycle (an energy loss of about
70 % with E2/E1 ∼ 0.3).

3.2. Cavitation bubble

A set of carefully controlled experiments were carried out using spark-generated
bubbles with a high-speed camera (Buogo & Cannelli 2002). These were done in a
laboratory tank 1 m long, 4 m wide and 5.5 m deep, filled with fresh water. The depth
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Cycle First period Second period

Fraction of available energy remaining (%) 100 24
Fraction of original energy remaining (%) 100 24
Rm (mm) 35.1 21.7
T (ms) 6.3 3.8

Table 2. Energy losses in contractions of the spark-generated bubble, maximum bubble radii,
and bubble periods from Buogo & Cannelli (2002). (E2/E1)

1/3 = Rm,2/Rm,1 (= 0.62) ≈ T2/T1

(= 0.60) using (3.6).

of the source is 2.5 m and the reference pressure at this depth is p∞ = 1.25 bar. The
bubble pulses were measured at a distance of 1.5 m from the source by a hydrophone
with normal bandwidth 350 KHz. The vapour bubble generated with a 720 J spark is
used for comparison to our model. The maximum bubble radius is 35.1 mm in the first
cycle and decreases to 21.7 mm in the second cycle. The bubble periods are 6.3 ms and
3.8 ms, respectively. The experimental data are summarized and analysed in table 2.
Again the data correlate reasonably well with (3.6) or with (2.6) and (2.7) if Pv is set
to 0. The second bubble period and the bubble maximum radius are around 60 % of
the first ones, while those are around 70 % for the previous explosion bubbles. This
might suggest that the cavitation bubble loses slightly more energy. This could be
cavitation bubbles collapse more violently since less because internal resistance in the
form of bubble pressure is available. Correspondingly, the emitted shock waves and
corresponding energy losses might be larger.

However, as discussed in § 2, Buogo & Cannelli estimated that the vapour pressure
was not negligible in their experiments. It was determined (using the collapse time–
maximum radius correlation of (2.8)) to be about Pv = 0.3 bar for the first cycle
and Pv = 0.06 bar for the second cycle. If these values are incorporated into (2.6),
(E2/E1)

1/3 = 0.67. Based on (2.7), this value becomes slightly larger at (E2/E1)
1/3 =

0.73. This would mean an energy loss of about 70 % according to (2.6) and 62 %
according to (2.7). These two values are comparable again to those found in § 3.1
for explosion bubbles. To conclude, we can state that the energy loss for a large
number of oscillating bubble systems is 60 to 70 % (nearly two-thirds) for each cycle,
regardless of their maximum size or origin.

As shown in figure 4, the incorporation of energy loss allows us to match well
with the measured bubble radii and bubble periods of Buogo & Cannelli (2002).
In this particular simulation, �P = P∞ − Pv is set to 1.0 bar for both bubble cycles
(thus Pv = 0.25 bar). The parameters for the calculation of this example are: ε1 = 700,
λ=1.4 and R̄0 = 0.0844. The prediction used the same fraction of total energy, which
was estimated from the experiment (see table 2).

Figure 5 shows the comparison of continuous pressure–time records measured at a
distance of 1.5 m from the source (using (2.10)). The first and second collapse bubble
pulses are estimated at 6.3 and 10.4 ms, respectively. Note that several reflection pulses
due to the boundary are observed in the experiment.

4. Axisymmetric bubble system
4.1. Boundary integral method

Figure 6 shows a schematic view of the problem to be considered in this paper. Again,
surface tension and viscous effects are not accounted for in this study. The boundary
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Figure 4. Comparison of experimental and simulation results for radius histories of the
spark-generated spherical cavitation bubble characterized by ε1 = 700, λ= 1.4 and R̄0 = 0.0844;
720 J spark, Rm,1 = 35.1 mm, Rm,2 = 21.7 mm. The experimental data (circles) are from Buogo &
Cannelli (2002).

of the bubble is denoted as S, and the fluid domain Ω . The boundary element method
takes advantage of Green’s theorem, by reducing the Laplace equation to an integral
equation. The solution of the Laplace equation on the boundary of the fluid domain,
or bubble surface S, is obtained as

c(P) φ(P) +

∫
S

φ(Q)
∂G(P, Q)

∂n
dS =

∫
S

G(P, Q)
∂φ( Q)

∂n
dS, (4.1)

where c(P) is the solid angle of a fixed point P on the bubble surface with the
integration variable Q also situated on the boundary, and n is taken outward from
the liquid into the bubble. Equation (4.1) relates the normal velocity ∂φ/∂n= n · ∇φ

to the potential everywhere on the bubble surface. Note that the integral is carried
out only on the bubble surface as the infinite flat rigid-wall effect has been taken into
account in the Green function G

G(P ,Q) =
1

|P − Q| +
1

|P ′ − Q| , (4.2)

with P ′ being the reflected image of P with respect to the wall. It is trivial to verify
from (4.2) that ∂G(P, Q)/∂n= 0 on the rigid wall. Equation (4.2) is actually the Green
function for a three-dimensional configuration, but it is also valid for axial symmetric
simulations (but not for truly two-demensional simulations). Strictly (mathematically
speaking), c(P) is equal to 4π when P is located in the fluid domain, it is 0 when
P is located outside the fluid domain and the actual value of c(P) is 2π when P
is located on a smooth surface S. However, the numerical discretization will lead to
slightly non-smooth surfaces and c(P) will be close to 2π, but not exactly. If one
just takes 2π regardless, it can lead to numerical instabilities. There is, however, an
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Figure 5. Comparison of (a) simulation and (b) experimental results for pressure waves from
the spark-generated spherical cavitation bubble; 720 J spark. The first collapse pulse appears
at 6.3 ms, and the second pulse at 10.4 ms. The data are from Buogo & Cannelli (2002).

alternative way for which there is no need to calculate the precise value of c(P) (as
will be explained later).

Suppose we know the bubble geometry S and the potential on S at some time t .
Equation (4.1) is then a Fredholm integral equation of the first kind for the normal
fluid velocity at the bubble surface. With the velocity of liquid at the surface of the
bubble known, the motion of the interface is determined by

DX
Dt

= ∇φ, (4.3)

where X is the position vector and described in the Lagrangian sense: D/Dt =
∂/∂t + u · ∇. The time evolution of the velocity potential is obtained by the unsteady
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Figure 6. The geometry used to consider axisymmetric bubble motion near a wall.

Bernoulli’s equation valid on the bubble surface as (dimensionless)

Dφ̄

Dt̄
= 1 + 1

2
|∇φ̄|2 − ε(V̄0/V̄ )λ, (4.4)

Again, gravity is neglected in (4.4), but could easily be included by adding a term
(−δ2z̄) to the right-hand side of this equation, where the vertical coordinate z on the
bubble surface must be used and the previously introduced buoyancy parameter δ. A
variable time stepping scheme is used (Best & Kucera 1992)

δt =
�φ

max
(

1
2
|∇φ̄|2 + ε(V̄o/V̄ )λ + 1

) , (4.5)

where �φ̄ was chosen to be 0.02 in most of the computations.
The numerical method works as follows. Determine the time step with (4.5), and

next update the potential on the bubble surface with (4.4). Now (4.1) can be used to
set up a system of equations relating the known potential and the unknown normal
velocities. One of the difficulties related to boundary element methods is the treatment
of the singularities when Q approaches P in (4.1). The inverse potential problem (thus
inside the bubble) can give an expression for the diagonal term of the matrix with
the potential term (the discretized version of the whole left-hand side of (4.1) which
also contains the strongest singularities). It appears that the diagonal terms of the
matrix are just 4π minus the sum of all the other elements in the same row (the
so-called 4π rule). More details can be found in Liu & Rudolphi (1999). Moreover,
this treatment makes it redundant to calculate the exact value of c(P ) in (4.1). The
weaker singularity found on the right-hand side of (4.1) (the term with the normal
velocities) can be eliminated using an analytical expression. The normal velocities can
be solved from the resulting matrix equation. The tangential velocity at the bubble
surface can be obtained with the help of the potential distribution at this surface.
Once the normal and tangential velocities are known, the velocity vector u = ∇φ can
be constructed. The position of the bubble surface can be updated with (4.3). A new
volume of the bubble will give rise to a new gas pressure (last term in (4.4)). Now all
variables are known and we can then proceed with the next time step. More on the
numerical details can be found in Wang et al. (1996).

4.2. Modification for toroidal geometry and rejoining

During the collapse phase of the bubble, usually a liquid jet is created that traverses
across the bubble with very high speed. If the liquid jet impacts on the opposite
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face of the bubble, the fluid domain becomes doubly connected. Numerically, two
challenges arise when this happens. First of all, some re-meshing has to be performed
in order to connect the fluid of the jet and the fluid on the far side of the bubble.
In an axial symmetrical configuration this is quite straightforward (Pearson et al.
2004 or Wang et al. 1996). Furthermore, the jet impact will generate a circulation in
the fluid. Zhang & Duncan (1994) have modelled this circulation by introducing a
vortex sheet that moves with the fluid. This vortex sheet can become highly distorted
as the bubble evolves. A simpler model consists of placing a vortex ring inside the
bubble enclosing the jet. The strength of this vortex ring is chosen to be equal to the
potential difference of the jet tip and the opposite bubble surface just before the jet
impacts. The potential is now decomposed into two parts, one corresponding to the
circulation of the jet impact (Ψ ) and a remainder (ϕ)

φ = Ψ + ϕ. (4.6)

The potential Ψ exhibits a jump across the vortex ring; the potential ϕ is smooth
throughout the whole fluid domain. An analytical solution can be found for the
velocity field generated by Ψ . See Wang et al. (1996) for more details.

As the toroidal bubble is re-expanding, the jet will weaken and the jet area will
also become smaller and smaller. Best (1994) took this effect into account by letting
the bubble rejoin on the axis of symmetry. In our numerical simulations, the bubble
is assumed to rejoin when a node on the bubble has reached a dimensionless radius
of less than 0.01. This value has been chosen also in order to prevent numerical
instabilities which can occur at lower values. The recommended value is between 0.01
and 0.05. A doubly connected bubble is now transformed into a singly connected one.
In order for this to happen, the node that has reached the said value of 0.01 and its
neighbour that is nearest to the axis of symmetry (either the node above or below it)
are placed on the axis of symmetry. It is reckoned that the total potential remains
constant at these two nodes for such small displacements. In fact, in the rejoining
process, the opposite procedure from the jet impact procedure is followed. The vortex
ring is taken out again. Its potential is added to the total potential according to
(4.6). From now onwards, the boundary integral equations are applied identically as
was done before the jet impact. Two simple tests were performed to ensure that the
procedure followed is correct. First, the energy levels before and after rejoining are
checked and remain constant. Secondly, the velocity profiles for all nodes just before
and just after the rejoining procedure are compared with each other and show no
noticeable differences.

4.3. Some results

4.3.1. Verification with the spherical bubble

In order to verify the axisymmetric code, the previous spherical case for an explosion
bubble was simulated. The asymmetry in the flow field is due to the presence of the
boundary. For motion near a boundary it is necessary at this time to introduce a
dimensionless stand-off parameter γ as

γ = H/Rm,1, (4.7)

where H is the distance away from the boundary at which inception of the bubble
occurs. Setting γ > 20 in the calculation, the influence of the wall becomes negligible
and a spherical symmetrically oscillating bubble should be obtained. As shown in
figure 7, the prediction using the axisyimmetric code corresponds very well to the
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Figure 7. Comparison for radius histories of the spherical explosion bubble using the
Rayleigh–Plesset equation (solid line) and the axisymmetric simulation code (circle), for the
same case as figure 2 (results are non-dimensionalized).

theoretical prediction obtained by the Rayleigh–Plesset equation for the previous
explosion bubble case of § 3.1 (variables are plotted dimensionless now).

4.3.2. A system with no energy loss

Consider an oscillating bubble as a system with no energy loss. A typical example
of bubble motion (λ= 1.4) can be taken for γ =2.0 and the strength parameter
ε = 100 with the corresponding initial radius equal to R̄0 = 0.1651. Figure 8 shows the
evolution of the bubble for the first expansion and collapse period. When the bubble
reaches its maximum size, it is still kept nearly spherical. In the consequent collapsing
phase, the high-speed liquid jet is formed. It eventually impacts on the other side of
the bubble at non-dimensional time of t̄ = 2.1085, and a doubly connected toroidal
geometry is formed via the employment of a vortex ring. Figure 9 shows the further
evolution of the toroidal bubble which is in the process of rebounding. The minimum
volume occurs at this toroidal stage (figure 9b). This example is as that shown in Best
(1993) and the shapes are very similar.

The further evolutions of the bubble for the second expansion and collapse period
are shown in figure 10. The remarkable feature is that the bubble resumes the singly
connected geometry in the rebounding period, and that it starts to form a second
liquid jet in the re-collapsing period. This demonstrates a scenario for a perfect
oscillating system (no energy loss).

In order to gain more insight into the oscillating bubble system, the energy balance
(and its components) is shown in figure 11. It can be observed that the total energy
is maintained throughout, although there seem to be some accumulated numerical
errors in the late stage of the second bubble period. The first minimum in kinetic
energy corresponding to the first maximum bubble volume at around t̄ = 1 is virtually
zero, which is strictly true only for a spherical bubble system. As shown in the figure
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Figure 8. The expansion and collapse of a bubble characterized by γ = 2.0 and ε =100.
Dimensionless times corresponding to successive profiles are: (a) expansion phase: 0.0089,
0.3169, 0.6233, 0.9906; (b) collapse phase: 1.3674 (outermost), 1.6907, 2.0003, 2.0645, 2.0824,
2.1075 and 2.1040 (innermost). The marks on the left-hand side of the figure indicate the
horizontal position of the bubble creation location (results are non-dimensionalized).
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Figure 9. The motion of the toroidal bubble (non-dimensionalized) that evolves from the
collapse of a bubble characterized by γ = 2.0 and ε1 = ε2 = 100. Minimum bubble volume is
shown in (b). Note that no energy loss is considered in the rebounding phase.
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Figure 10. The dimensionless rebounding and re-collapse of a bubble characterized by γ = 2.0
and ε1 = ε2 = 100. Dimensionless times are: (a) rebounding phase: t̄ = 2.3151 (innermost),
2.3457, 2.3966, 2.4299, 2.5046, 2.7651 (outermost); (b) re-collapse phase: 3.1111 (outermost),
3.5699, 3.7356, 3.9697, 4.0946, 4.1511, 4.2105 and 4.2697 (innermost). The marks on the
left-hand side of the figure indicate the horizontal position of the bubble creation location.
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Figure 11. Normalized energy balance of a bubble system characterized by γ = 2.0 and
ε1 = ε2 = 100, as shown in figures 8, 9 and 10. Note that the kinetic energy at minimum volume
is no longer zero, indicating some part of the bubble being in motion (toroidal bubble). The
total energy (= 4.7302) is maintained up to the second oscillation period (time is dimensionless).

at around t̄ = 2, the second minimum corresponding to the first minimum volume
occurs at the toroidal stage. Here, we note the kinetic energy is no longer zero,
indicating that some parts of the bubble are still in motion (Pearson et al. 2004).
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Figure 12. Some data for the toroidal stage over a range of standoff distances γ . (a) The
dimensionless times of jet impact (square) and bubble minimum volume (circle); (b) kinetic
energies at those times as a percentage of the total energy.

4.3.3. The minimum volume stage

Before we discuss our calculations for the more realistic system with energy loss, it
is instructive to examine the minimum volume stage (in which the loss of energy will
be incorporated) in terms of the magnitude of kinetic energy and bubble topology.
Figure 12(a) shows the variations of times of bubble minimum volume and formation
of toroidal bubble as a function of γ . For a distance of γ < 2.5, the toroidal bubbles
form before they reach a minimum volume. This is due to the strong asymmetric
force caused by the boundary. For 2.5 <γ < 4.0, the bubble minimum volume occurs
before the formation of the toroidal shaped bubble. That is, the bubble can evolve
into a toroidal form even in the rebounding phase owing to the high inertia of the jet.
For larger distances, however, the jet cannot completely penetrate the bubble during
the non-spherical rebounding phase (no toroidal geometry). Eventually, the oscillating
system behaves almost spherically for γ > 10. Figure 12(b) shows the calculated kinetic
energy at the time of jet impact and at the time of bubble minimum volume as
a function of γ . We note the ratio of the kinetic energy to total energy at bubble
minimum volume decreases and becomes virtually zero for γ = 10. On the other hand,
the kinetic energy estimated at the time of toroidal formation reaches a minimum
value at a distance of γ ≈ 2.5 and starts to increase up to γ = 4 (no toroidal shaped
bubble is formed above this value).

4.3.4. A system with energy loss

In this section, we consider an oscillating bubble system with some energy loss. All
parameters are set equal to the previous example of a bubble motion (γ = 2.0 and
ε1 = 100, λ= 1.4), except that the strength parameter is discontinuously replaced by a
new value εn, to reduce the potential energies at each bubble volume minima. Figure 13
shows an example of the energy balance for ε2 = 80. As seen, the total energy in the
system undergoing several cycles is maintained only for each oscillation period. Note
that the total energy in the second cycle is not exactly 80 % of that of the first cycle.
This is because the kinetic energy at bubble minimum volume is not zero, and only
the potential energy estimated at that time is reduced by 20 %.

Figure 14 shows the kinetic energies calculated from the time of minimum volume
until the time of resumption of a singly connected bubble topology in the rebounding
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Figure 13. An example of (normalized) energy balance up to the second oscillation period
with a consideration of some energy loss. The potential energy estimated at the bubble
minimum volume is reduced by 20 %. The total energy in the second cycle is not 80 % of
that of the first cycle owing to the non-zero kinetic energy. There is some numerical error
accumulation at the late stage of the second cycle. Time is made dimensionless.

phase for a range of ε2 values. In figure 14(a) the values for γ = 2 are shown and
in figure 14(b) for γ =3. The results until the time of bubble minimum volume are
the same, so they are not shown here. The extent of rapid energy deposition from
potential energy to kinetic energy during the early rebounding phase varies with the
amount of energy reduction in the system. We note that the toroidal bubble for γ =3
evolves into a singly connected bubble faster than that for γ = 2.0 (̄t = 2.06 vs. t̄ = 2.12,
respectively). In general, the kinetic energy within the doubly connected bubble can
reach up to 63 % of the system total energy.

Figure 15 shows the evolution of the previous bubble for the rebound and re-
collapse period (see figure 10), but with a reduced value of ε2 = 30. Note that the
rigid boundary is located at z = 0 in this figure. The rejoining starts in the part of
the bubble nearest to the wall and starts to close like a zipper away from the wall
during the re-expansion stage. The second period is much shorter than the previous
no-energy-loss case. This is also consistent with the spherical oscillating bubble system
described previously.

One remarkable difference compared with the previous case of a perfect system is
that a counterjet develops very rapidly in the rebounding stage with a combination
of the necking process. In the following re-collapsing period, it starts to collapse
and eventually a second jet evolves. Vogel et al. (1989) have shown that a counterjet
develops only for γ > 1. Lindau & Lauterborn (2003) confirmed this and found that
no counterjet develops above γ ≈ 3. For a high value of γ , he jet impact does not
happen, and no counterjet arises. For γ < 1, the bubble directly impacts on the wall
during expansion, resulting in no counterjet. Hence, the counterjet is coupled with an
impact of the jet on the other bubble surface. Another mechanism contributing to the
development of the counterjet can be attributed to cavitation inception which follows
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Figure 14. The variations of kinetic energy for the toroidal stage (from jet impact up until
the time of rejoining into a singly connected shape) for a range of gas pressures ε2. (a) γ = 2.0,
(b) γ = 3.0. Time is made dimensionless.

the propagation of the ‘jet torus shock wave’, which is the energy loss mechanism.
Some discussions about the creation mechanisms of the counterjet were given by
Lindau & Lauterborn (2003).

The couterjet has been observed only in the experiments (see e.g. Tomita &
Shima 1986; Vogel et al. 1989; Ward & Emmony 1991; Philipp & Lauterborn 1998;
Kodama & Tomita 2000), and has never been captured in fluid dynamic simulations
(Lindau & Lauterborn 2003). In fact, the simulations are, in principle, not
realistic without any incorporation of energy loss into the oscillating system. Some
experimental pictures (Lindau & Lauterborn 2003) are shown in figure 16 and the
shapes are very similar to the present prediction. Note that the rigid boundary is
below in this figure and the main body of the bubble is not shown. The horizontal
location of the counterjet tip is near the bubble creation location, which is also
estimated in the simulation of figure 15. Because of fluid instabilities on the bubble
interface some parts of the counterjet may remain in the system as shown in figure 16.
These instabilities are not covered by the present numerical scheme.
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Figure 15. The dimensionless rebounding and re-collapse of a bubble characterized by γ = 2.0,
δ = 0, ε1 = 100 and ε2 = 30. Dimensionless times are: (a) rebounding phase: t̄ =2.3647
(innermost), 2.5253, 2.7568 (outermost); (b) re-collapse phase: 2.9903, 2.9959, 2.9975, 3.0050,
3.0210, 3.0552 and 3.0980. The second period is shorter than the previous case with no energy
loss (see figure 10). The marks on the left-hand side of the figure indicate the horizontal
position of the bubble creation location.

Figure 16. Onset of the counterjet for γ =2.6, 2.2 and 1.8 (top to bottom), 10, 120, 250, 500,
1000, 2000, 4000 and 8000 ns after shock wave emission. Rm = 1.5 mm, frame width 0.97 mm.
Note that the rigid boundary is below. The marks on the left-hand side of the figure indicate
the horizontal position of the bubble creation location (reproduced with permission from
Lindau & Lauterborn 2003).

5. Conclusions
The boundary integral method has been widely applied to the analysis of cavitation

(or explosion) bubbles only up to toroidal bubbles that occur during collapse in the
neighbourhood of a boundary. In this paper, the further evolution (rebound) of
the toroidal bubble is considered with energy loss in the system taken into account.
The energy loss in the oscillating bubble system is incorporated into the mathematical
model by a discontinuous jump in the potential energy at the minimum volume during
the short collapse–rebound period accompanying wave emission.

The first part of this study is the evaluation of the spherically symmetric motion of
a bubble using the Rayleigh–Plesset equation with the system energy loss taken into
account. Excellent agreement with experimental data for the bubble radius evolution
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up to three oscillation periods is obtained, indicating the suitability of the current
implementation. For the tested explosion-generated and spark-generated bubbles, the
total energy in the second cycle is around 30 % of that in the first cycle.

Next, the loss of system energy is incorporated into the boundary integral method
for the analysis of rebounding bubbles in the neighbourhood of a rigid boundary, in
an asymmetric geometry. By taking the system energy loss into account, the peculiar
entity, counterjet, which has never been captured in the simulations, seems to appear
during the rebounding phase.

The authors would like to thank Professor Werner Lauterborn for allowing
reproduction of figure 16. This work was carried out during the visit of M.L. to
the National University of Singapore. M. L. acknowledges the financial support by the
Korea Research Foundation Grant (KRF-2004-013-D00058).
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